Identification of Material Parameters for the Simulation of Acoustic Absorption of Fouled Sintered Fiber Felts

نویسندگان

  • Nicolas Lippitz
  • Christopher Blech
  • Sabine Langer
  • Joachim Rösler
چکیده

As a reaction to the increasing noise pollution, caused by the expansion of airports close to residential areas, porous trailing edges are investigated to reduce the aeroacoustic noise produced by flow around the airframe. Besides mechanical and acoustical investigations of porous materials, the fouling behavior of promising materials is an important aspect to estimate the performance in long-term use. For this study, two sintered fiber felts were selected for a long-term fouling experiment where the development of the flow resistivity and accumulation of dirt was observed. Based on 3D structural characterizations obtained from X-ray tomography of the initial materials, acoustic models (Biot and Johnson-Champoux-Allard) in the frame of the transfer matrix method were applied to the sintered fiber felts. Flow resistivity measurements and the measurements of the absorption coefficient in an impedance tube are the basis for a fouling model for sintered fiber felts. The contribution will conclude with recommendations concerning the modeling of pollution processes of porous materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential of Metal Fibre Felts as Passive Absorbers in Absorption Silencers

The growing noise exposure of residents, due to a rising number of flights, causes significant impacts on physical health. Therefore it is necessary to reduce the noise emission of aircrafts. During take-off, the noise generated by the jet engines is dominating. One way to lower the noise emission of jet engines is to build an absorption silencer by using porous liners. Because of the high ther...

متن کامل

Optimization and sound absorption modeling in Yucca Gloriosa natural fiber composite

Introduction: Nowadays, the acoustic behavior analysis of natural fibers composites has received increasing attention by researchers. In this regard, the present study aimed to optimize and model the sound absorption behavior of composites made of Yucca Gloriosa (YG) fiber via using a mathematical modeling approach. Methodology: In this experimental cross-sectional study, in order to fabricate...

متن کامل

The Influence of Fiber Crimp on Acoustic Performance of Polypropylene Fibrous Batt

This paper reports on the effect of fiber crimp frequency on sound absorption capability of staple polypropylene nonwoven batts. Stuffer box was used to impart crimp to spun tow. Crimping of the tow renders the fibers the required textile applicability. In this work, polypropylene batts composed of staple fibers with linear densities of 9, 14, and 18 denier were employed. Three crimp frequency ...

متن کامل

Acoustic properties of 3D printed bio-degradable micro-perforated panels made of Corkwood Fiber-Reinforced composites

Introduction: Micro perforated panel (MPP) absorbents promise the next generation of sound absorbers as they have significant advantages over other porous adsorbents. In this study, we will investigate the acoustic performance of MPP absorbents made of biodegradable polylactic acid composite reinforced with natural corkwood fibers (PLA/Corkwood) by 3D printing technology. Material and Methods:...

متن کامل

Impact of Layout Sequence of the Natural and Synthetic Adsorbents in Double-Layered Composites on Improving the Natural Fiber Acoustic Performance Using the Numerical Finite Element Method

Introduction: The acoustic performance of natural fiber adsorbents has been investigated in numerous studies. A part of these materials show a poor adsorption within the frequency range of less than 1000 Hz. In the present study, attempts were made to investigate the effect of layout sequence of double-layered composites consisting of natural and synthetic fibers on improving the acoustic adsor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016